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Abstract. We investigate the ability of the local density approximation (LDA) in density
functional theory to predict the near-edge structure in electron energy-loss spectroscopy in the dipole
approximation. We include screening of the core hole within the LDA using Slater’s transition
state theory. We find that anion K-edge threshold energies are systematically overestimated by
4.22± 0.44 eV in twelve transition metal carbides and nitrides in the rock-salt (B1) structure.
When we apply this ‘universal’ many-electron correction to energy-loss spectra calculated within
the transition state approximation to LDA, we find quantitative agreement with experiment to within
one or two eV for TiC, TiN and VN. We compare our calculations to a simpler approach using a
projected Mulliken density which honours the dipole selection rule, in place of the dipole matrix
element itself. We find remarkably close agreement between these two approaches. Finally, we
show an anomaly in the near-edge structure in CrN to be due to magnetic structure. In particular,
we find that the N K edge in fact probes the magnetic moments and alignments of the Cr sublattice.

1. Introduction

The near-edge and extended fine structure in electron energy-loss spectroscopy (EELS) and
x-ray absorption spectroscopy (XAS) contain a wealth of information about the electronic
and atomic structure of solids. Our intention in this paper is to explore ways of calculating
the near-edge structure in EELS and XAS. This has been done in the past by many authors
(for reviews, see references [1–3] and references therein) but a number of important questions
remain to be addressed. We will investigate firstly the accuracy of the threshold energy so
that we can predict the energy loss in absolute terms. Secondly we will invoke a comparison
between explicit calculation of the dipole matrix element and the intuitively simpler task of
evaluating the local density of states projected onto a suitable local orbital. Finally we describe
our discovery of how magnetism in CrN affects the measured spectrum and we propose a novel
application of EELS and XANES, namely to probe the magnetic structure of alloys and its
temperature dependence.

As explained by Lee and Pendry [4], the oscillatory extended fine structure (typically
20 eV or more above the threshold, oredge, for core-level excitations) can be interpreted
as arising from the first few shells of neighbours to the excited atom. On the other hand
the EELS and XAS near-edge structures (ELNES and XANES) provide information about
the bandstructure or local density of states. The explanation is briefly as follows. When a
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fast-electron beam or x-ray irradiation is inelastically scattered by an atom at the origin, in
a single-particle picture a core electron is said to be excited into an unoccupied state. This
state can be represented mathematically as proportional to an ‘outgoing partial wave’—a solid
Neumann or Hankel functionh`(kr)Y`m(r̂)—which is a solution of Schrödinger’s equation in
a spherical potential centred at the origin. Selection rules demand that the angular momentum
` of the final state is that of the core state plus or minus one. The near-edge structure in
a free atomin vacuoor in dilute gas can then be calculated and, at least in the case of the
K edge, turns out to be a monotonically decaying intensity as a function of energy above the
excitation edge [5,6]. In a solid the outgoing wave interferes with ‘incoming waves’—Bessel
function solutionsj`(kr)Y`m(r̂) of Schr̈odinger’s equation in the potential centred around
the other atomic sites in the crystal. One then may make a hierarchy of approximations to
calculate the structure superimposed upon the atomic background. Lee and Pendry show
that the extended fine structure may be calculated in a single-scattering approximation (which
means including interference of the outgoing wave with just one backscattered wave from
each shell of neighbours); however, the near-edge structure can be predicted only if multiple-
scattering is included in which the outgoing wave scatters a number of times before returning
to the central site at the origin. The multiple-scattering calculation amounts essentially to
a cluster electronic structure calculation in the approximation of a muffin-tin potential and
usually an increasing number of neighbour shells are included as one builds up the structure
of the absorption spectrum. This approach allows valuable insight to be gained into the
contribution that successively more distant neighbour shells make to features in the near-edge
and extended fine structure. This is reminiscent of the method of moments in constructing
the density of states in tight-binding theory [7]. The drawback is that shape approximations
are imposed on the crystal potential, which is usually not self-consistent [8]; computation of
all important scattering paths becomes non-trivial, and convergence may be not be achieved
in all problems [9, 10]. The most recent calculations in multiple-scattering theory used a
self-consistent potential, but the muffin-tin shape approximation was still necessary [3]. An
alternative approach is to recognize that throughout one wanted the bandstructure, to calculate
it by standard means (LAPW, LMTO, pseudopotential plane wave etc) and extract the relevant
transition matrix elements. This approach was pioneered by Müller et al for extended fine
structure [11] and recently reformulated by Mulleret al [12]. The latter authors also used the
theory to relate spectroscopic information to the electronic structure contribution to bonding
in alloys and at crystal defects [13].

Because modern bandstructure methods make few or no approximations beyond the
local density approximation (LDA) to density functional theory [14, 15], one is led to make
quantitative comparisons between experiment and theory of the near-edge structure. In the
present paper we compare the calculated threshold energies with the experimental ones for a
range of transition metal carbides and nitrides with the B1 structure and make a comparison of
the predicted and experimental near-edge structures for TiC, TiN, VN and CrN. These materials
are interesting since they possess both functional and structural applications, particularly due
to their strong bonding and stability. They also represent a suitable model series of materials
since their electronic structures turn out to be well approximated in a rigid-band model.

The structure of the paper is as follows. In section 2 we give details of experimental
methods and section 3 reviews the underlying theory of the near-edge structure. We describe
the calculation of threshold energy in section 4. In section 5 we show calculated electronic
structure; and go on to predict spectra in section 6. In section 7 we describe how EELS
probes the magnetic structure of CrN, and show that there remains a complex pattern of local
moments above the Ńeel temperature. Discussion and conclusions may be found in sections 8
and 9.
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2. Experimental methods

With the exception of the value for CrN, all of our experimental thresholds have been published
previously [16, 17]. In addition, all the materials used in that previous work have had their
structures confirmed by powder x-ray diffraction which also showed that their lattice parameters
were consistent with those given by Goldschmidt [18] for compounds close to stoichiometry.
Since this work, energy-loss data for CrN were acquired in a manner similar to that used for
the other nitrides [16] and edge shapes from other samples of TiN and VN have been acquired.
Below, the key points are covered briefly while the details can be found in the earlier papers.
The x-ray absorption data for CrN have not been reported before and the details of the method
used are given below.

2.1. Materials

Only the new materials are considered here. The CrN powder was purchased from the same
supplier as those used in the earlier work. It was supplied as at least 99% pure with a com-
position close to stoichiometry although no detailed analysis was provided. As for all these
commercial materials, the particles in the powder had an oxide coating. X-ray diffraction gave
a pattern which was indexed as the rock-salt structure with a lattice parameter consistent with
the most stoichiometric composition given by Goldschmidt [18]. The absence of reflections
from the oxide suggest that it was present as an amorphous phase.

The new TiN sample was a powder, plasma treated in N2 gas to ensure that it was close to
stoichiometry. Its x-ray diffraction pattern was consistent with this. The new VN sample was
prepared and characterized by Lengauer and Ettmayer [19] as VN0.991. Pflügeret al [20] show
that sub-stoichiometry has no effect on the threshold energy of the C K edge in TiC but does
cause changes in the edge shape that are relatively subtle for small degrees of sub-stoichiometry.
Thus, while the edge shapes from these new samples are used here, the threshold energies are
taken from the original work.

2.2. Electron energy-loss spectroscopy

For electron energy-loss spectroscopy, each material was lightly crushed by impact in an
agate mortar and pestle. The crushed powder was dispersed in propan-2-ol and drops of the
suspension were placed on a holey carbon film supported on an electron microscope grid. Such
specimens provide freshly fractured thin regions of material, free of oxide and overhanging
the edge of the carbon film. These small regions can be studied using an electron spectrometer
attached to an electron microscope.

The electron energy-loss spectra were recorded using a GATAN 666 electron spectrometer
which uses a photodiode array as the detector. This spectrometer was mounted on a VG
Microscopes HB5 scanning transmission electron microscope with post-specimen lenses [21].
The HB5 was operated at 100 keV with a probe convergence half-angle of 11 mrad and a
spectrometer acceptance half-angle ofθmax = 12.5 mrad (see figure 1). The probe diameter
was∼1 nm and the probe current was∼0.2 nA. The FWHM of the zero-loss peak was typically
0.3 to 0.4 eV. Operated in this way, the spectrometer integrates over a distribution of scattering
vectors with a FWHM of∼20 mrad.

The temperature dependence of the shape of the N K edge in CrN was investigated in
a Philips CM20 FEG transmission electron microscope operated at 200 keV and equipped
with a similar GATAN 666 electron spectrometer system. The incident probe half-angle was
6.1 mrad and the spectrometer half-angle of collection wasθ = 5.1 mrad. A GATAN double-tilt
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Figure 1. (a) The geometry of the inelastic scattering in wavevector space.θ andφ are polar
and azimuthal angles subtended by the free-electron wavevectorkf of the outgoing electron beam
relative to that of the incoming beamki which is taken along the−z-direction. The lower curve is a
section through a Ewald sphere: the locus of allk-vectors of magnitudek = h̄−1√2mE0 whereE0
is the energy of the incoming electron beam (typically 100–200 keV). The upper curve represents
the Ewald sphere for the outgoing beam with energy loss equal to(h̄2/2m)(k2

f − k2
i ), typically

a few hundred eV—the diagram is not to scale.θ is the half-angle subtended at the detector, its
maximum valueθmax is typically 5–20 mrad. (b) For a given energy loss, the vector−q traces
the surface of a spherical cap (a segment of the Ewald sphere ofkf ) with radius of curvaturekf ,
whose circumference is determined by the maximum half-angleθmax which in turn depends on
qmax. The shortestq-vector is that for forward scattering. The diagram illustrates the integration
betweenqmin andqmax in the text.

liquid-N-cooled Be x-ray rod and a Philips single-tilt heating rod were used. Spectra were
recorded at room temperature, at−140◦C and at +260◦C. The temperatures were measured
with the thermocouples supplied with the specimen rods. No detectable change in the edge
shape was observed.

In all cases, spectra were recorded from thin regions overhanging the edge of the holey
carbon film using a dispersion of 0.1 eV/channel. During acquisition, the probe was scanned
over an area typically 13 nm× 10 nm to prevent any radiation-induced changes. Data from
areas where the spectra showed a detectable O K edge were discarded. To minimize the
fixed pattern noise inherent in the photodiode detector, spectra were recorded at a number of
positions on the array and subsequently aligned and summed. The spectra had the background
removed and were corrected for the effects of multiple energy losses and for the broadening
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due to the detection system. Details of the procedures are given in the earlier papers [16,17].
To determine the absolute energy of an edge threshold, it is necessary to compare the

position of the zero-loss peak in one spectrum with the position of the threshold in a second
spectrum recorded with a voltage applied to the flight tube of the spectrometer. The voltage
is chosen so that the energy of electrons which have excited the state of interest is raised to
approximately that of the incident electrons. In this way the edge appears at a similar position
on the diode array. Unfortunately any change in either the EHT voltage of the microscope
or the prism current of the spectrometer between recording the individual spectra results in
an error. This can be overcome by recording a sequence of spectra alternating between the
zero-loss peak and the edge. In this way the effects of a steady drift and sudden jumps can
be detected and allowed for. The values obtained in this way show consistent patterns and are
in good agreement with values reported by Fink and co-workers [20,22]. However, there are
some discrepancies of∼0.5 eV which are bigger than the experimental errors. These appear
to arise from the fact that a much lower mean incident current is used to record the zero-loss
peak than is used to record the edge in our equipment. It appears that the oxide coating on
the particles causes a different level of charging of the particle for the two classes of spectra.
In some way, this causes a systematic shift in the threshold energy. The effect is that the
value determined at a given position is precise but can differ from the value for a different
particle by more than the combined standard errors. The problem appears to be worse with the
nitrides than the carbides and, in part, explains the larger errors on our values for the nitrogen
thresholds (see table 1, below). In principle, the method used by Fink and co-workers [20,22]
is independent of drifts in the high-voltage supply and,prima facie, their values should be more
accurate. Thus, where they are available, we have used them rather than our own. In some
cases, their experimental values are more consistent with our calculations while, in others, the
reverse is true.

Table 1. The threshold energyEth (eV) at the anion K edge, calculated in the one-electron
approximation (1e), from the total-energy difference (1SCF) and in the Slater transition state
theory (TS); compared with experiment. The mean value of the one-electron error is−22.91 for
the nitrides and−19.66 for the carbides. For the error in the transition state data the mean values
are 4.45 for the nitrides and 3.99 for the carbides. The mean error from the TS for all carbides and
nitrides is 4.22± 0.44. The experimental value for CrN is previously unpublished; other data are
from references [16, 17] except those marked with an asterisk which are from references [20, 22]
(see section 2.2).

1e 1SCF TS Experiment 1e error TS error

TiN 373.88 401.17 401.20 397.0± 0.2 −23.12 4.20

VN 374.14 401.39 401.49 396.8± 0.15∗ −22.66 4.69

CrN 374.41 401.22 401.35 397.3± 0.5 −22.89 4.05

ZrN 374.23 401.56 401.56 397.3± 0.15∗ −23.07 4.26

NbN 374.66 402.05 402.28 397.5± 0.15∗ −22.84 4.78

HfN 374.64 402.18 402.20 397.5± 0.2 −22.86 4.70

TiC 261.79 285.14 285.36 281.5± 0.15∗ −19.71 3.86

VC 262.77 285.80 285.89 282.6± 0.15∗ −19.83 3.29

ZrC 261.60 285.32 285.61 281.4± 0.2 −19.80 4.21

NbC 262.98 286.18 286.23 282.5± 0.15∗ −19.52 3.73

HfC 261.44 285.51 285.88 281.4± 0.2 −19.96 4.48

TaC 263.09 286.51 286.56 282.2± 0.2 −19.11 4.36
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2.3. X-ray absorption spectroscopy

For XAS, a slurry of the CrN powder in acetone was made; this was used to form a uniform
coating on a tantalum foil which was mounted on the sample holder in the beam line. No
attempt was made to remove the oxide coating from the individual particles.

The XAS was carried out on the 1.1 beam line of the Synchrotron Radiation Source at the
Daresbury Laboratory. The grating used had 1800 lines per mm and was operated in negative
order. The Ni-coated area of the grating was used although the N K edge is just too low in
energy to benefit from the reduction in the second-order radiation provided by the absorption
of the Ni L edges at∼850 eV. There was no window between the source and the sample.
The absorption was measured from the total electron yield. The incident intensity,I0, was
monitored using a Keithley electrometer to measure the current to ground from a gold mesh
which had been thoroughly cleaned by argon-ion bombardment. The current to ground from
the specimen,Ie, was measured using a second Keithley electrometer. The absorption was
taken as proportional toIe/I0. The energy scan was in steps of 0.5 eV between 370 and 390 eV
and above 420 eV and 0.1 eV between 390 and 420 eV.

The background under the N K edge was assumed to have a similar form to that under the
N K edge in an electron energy-loss spectrum, i.e., a functional formAE−r whereE is the
energy andA andr are fitting constants. By fitting a straight line to ln(Ie/I0) versus ln(E)
in the region 320 eV to 380 eV prior to the edge, the background can be extrapolated under
the edge and subtracted. Since it is difficult to determine the absolute energy of the threshold,
the x-ray absorption data were shifted by 0.6 eV to align the threshold to that of the electron
energy-loss data.

3. Theory

After making the dipole approximation (described below) the theories of EELS and XAS lead
to similar expressions for the intensity of absorption or inelastic scattering cross section [23].
We will consider the case of EELS in which a beam of electrons in plane-wave states whose
wavefunctionsψ(r) are proportional to eiki ·r passes through a foil of material and is scattered
inelastically into other plane-wave states with wavevectorskf . Thuski andkf are initial and
final wavevectors of the electron beam, ¯hq = h̄(ki − kf ) being the momentum transferred to
the scatterer. For scattering from an isolated atomin vacuounder these conditions one can
write down an expression for the cross sectionσf [24] for scattering into a particular final
state [25]:

σf =
(

2me2

h̄2

)2
kf

ki

∫
d�

∣∣Ff (q)∣∣2
q4

(1a)

=
(

2me2

h̄2

)2 1

k2
i

∫
dq

q3
dφ

∣∣Ff (q)∣∣2 (1b)

where the integral in (1a) is over the solid angle� subtended by the detector ande andm are
the electronic charge and mass. In (1b) we have used (see figure 1)

kf

ki
d� = kf

ki
sinθ dθ dφ = 1

k2
i

q dq dφ

which follows fromq = ki − kf [25].
In (1) Ff (q) is theform factorfor inelastic scattering from the ground state of the atom
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into the final excited state:

Ff (q) =
∫
· · ·
∫
ψ∗f ψi

Z∑
j=1

eiq·rj dr1 dr2 · · · drZ

= Z
∫
· · ·
∫
ψ∗f ψie

iq·r1 dr1 dr2 · · · drZ

whereψi(r1, . . . , rZ) andψf (r1, . . . , rZ) are the ground- and excited-state wavefunctions of
theZ-electron atom. The second line follows from the antisymmetry of fermion wavefunctions.
The many-electron wavefunctions appear as product wavefunctions with the initial and final
states of the beam; hence the terms eiq·rj appear after the integration over the coordinater

of the plane-wave states has been done [25]. The final state of the atom is one in which an
electron originally in an atomic core state has been excited to an unoccupied level. In the final
state, the electrons relax to screen the core hole. We will want to account for this effect in our
calculations.

Equation (1) has been derived by Bethe from the golden rule of Dirac and Fermi, and
therefore implicitly assumes the first Born approximation for scattering, namely the first order
in perturbation theory. Physically this means that incoming particles are scattered only once
at each atomic site, producing just a single electronic excitation of the atom†. According
to Bethe [25], the first Born approximation confines us to particle velocities greater than
(Z/137)c wherec is the speed of light. An upper bound on the velocity is about1

2c since the
formula is non-relativistic. This strictly confines us to beam energies in EELS below 60 keV.
However, relativistic corrections at modest velocities above1

2c simply affect the prefactor in
the differential cross section which is ‘relativistically nearly correct’ [25]. In our bandstructure
calculations we include all relativistic effects except spin–orbit coupling; for simplicity, though,
we will adhere to non-relativistic scattering formulae.

Bethe points out that if one were able to write the ground- and final-state atomic wave-
functions as single Slater determinants, then inFf (q) only one-electron integrals survive due
to orthogonality of the one-electron orbitals; in other words the form factor reduces to a single
important one-electron integral between core- and excited-electron orbitals. Thereby we make
the one-electron approximation and write

F
(1e)
nk (q) =

∫
dr ϕ∗nk(r)e

iq·rϕc(r) = 〈nk|eiq·r|c〉. (2)

Here,ϕc(r) = 〈r|c〉 is the core-electron initial-state eigenfunction, having eigenvalueεc,
andϕnk(r) = 〈r|nk〉 is the final (band) state, with energyεnk, which we have labelled with
quantum numbersk andn, the wavevector and band index in the first Brillouin zone of the
electronic states in a crystalline solid. By making the one-electron approximation and writing
the final state as an unoccupied band state, we have made the transition from atomic to solid-
state theory. In EELS we measure the intensity, or cross section, as a function of the energy
lossE in the inelastic scattering caused by excitation of a core state‡. Therefore we shall
replaceσf in (1b) with a sum over all the cross sectionsσc,nk for excitations from the core
state in question into final states with energyεnk = εc +E. In this way, we define a differential
cross section per unit energy for inelastic scattering with respect to energy lossE as

σ(E) =
∑
nk

σc,nkδ(ε − εnk).

† This must not be confused with the notions of single and multiple scattering that are used as levels of approximation
in solving the electronic structure problem in this context. In the bandstructure approach that we adopt here, multiple
scattering in that sense is included up to all orders.
‡ We will useE (=h̄2(k2

f − k2
i )/2m) to denote the energy loss, andε to denote energy relative to the energy zero

defined in a bandstructure calculation, which we normally take to be the Fermi energy; hence in the one-electron
bandstructure,E = ε − εc whereεc is the eigenvalue of the core state.
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We should point out that the Dirac delta function appearing here is to weight the cross section
according to the number of available states; the energy-conserving delta function in the usual
statement of the golden rule is already worked out for the case of plane-wave states [24] and
included in the prefactor in equation (1). Although in band theory all states have an infinite
lifetime, it is a rather general result that states above the Fermi surface have a lifetime inversely
proportional to the square of their energy relative to the Fermi level (at least in metals, and up
to about 40 eV [26,27]). Thus the delta function should be replaced by a Lorentzian function
in order to be able to compare with experimental lineshapes. In our calculations we will simply
apply a convolution to the density of statespost hoc.

In an EELS experiment, the scattered beam is usually collected over a certain range of
solid angle. Therefore what is measured is the number of electrons per unit time per unit
energyI (E) scattered with energy lossE; and if the incident flux of electrons isI0 per unit
area per unit time, after substituting (2) forFf (q) in (1b), the cross section proportional to
I (E)/I0 is

σ(E) =
(

2me4

h̄2

)
1

E0

∫
dq

q3
dφ

∑
nk

|〈nk|eiq·r|c〉|2δ(ε − εnk) (3)

in which the integral is to be evaluated betweenqmin, the momentum transfer in forward
scattering, andqmax which is determined by the geometry of the apparatus (see figure 1). We
have definedE0 = h̄2k2

i /2m as the energy of the incoming electron beam.
Equation (3) is the central result of the theoretical development; and can, in principle, be

calculated to arbitrary precision within LDA once the exponential is expanded in powers of
q ·r [28]. However, to do the integration overq requires knowledge of the scattering conditions
in the microscope and the orientation of the crystal. In what follows we will show that if the
expansion of eiq·r is taken to first order (the dipole approximation), then in the case of a cubic
or isotropic material, the integration overq reduces to a constant prefactor multiplying the sum
overnk in (3).

In thedipole approximationwe write

eiq·r ≈ 1 + iq · r

which can be only be fully justified by reference to experiment. The maximum value ofr is
the maximum extent of the core wavefunction, and the maximum value ofq is determined
by the collection angle in the microscope which is typically no greater thanθmax = 20 mrad.
For carbide and nitride K edges we find therebyq · r . 1. In the measurements by Pflüger
et al [20, 22] the collection angle was ten times smaller; henceq · r � 1 and agreement
between our and their spectra indicates the validity of the dipole approximation. In addition,
as we shall see (figure 8, below) and as has been found elsewhere [29], agreement between
XANES and ELNES confirms its validity since in XAS the origin of the approximation is quite
different [23]. Equation (1) also indicates that the cross section is dominated by smallq. We
return briefly to this question in section 8.

The matrix elements of unity will be zero due to orthogonality between core and band
states, leaving only matrix elements of iq · r. Let us define, for brevity,

〈z〉2 =
∑
nk

|〈nk|z|c〉|2δ(ε − εnk) (4)

and similarly〈y〉2 and〈x〉2. By reference to figure 1(b), we may now evaluate the integral
in (3) in the dipole approximation. Noting that

cos2 θ ′ =
(
k2
f − k2

i − q2

2kiq

)2
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we have∫
dq

q3
dφ

∑
nk

|〈nk|q · r|c〉|2δ(ε − εnk) =
∫

dq

q3
dφ (q2

x 〈x〉2 + q2
y 〈y〉2 + q2

z 〈z〉2)

= π ln
qmax

qmin
(〈x〉2 + 〈y〉2) + πA(2〈z〉2 − 〈x〉2 − 〈y〉2) (5)

where

A = 1

8

2m

h̄2

E2

E0

(
1

q2
min

− 1

q2
max

)
− 1

2

E

E0
ln
qmax

qmin
+

1

8

h̄2

2m

1

E0
(q2

max− q2
min).

Cross terms involvingqxqy, qxqz, . . . need not appear in the first line of (5), since they
vanish in the integral overφ. We can recast (5) into a transparent form using the experimental
parametersθE andθmax [30]. To first order, we have(ki−kf )/ki = E/2E0 ≡ θE and therefore
q2

min = k2
i θ

2
E . To first order,qmin is the component ofq parallel toki and hence

q2
max= k2

i (θ
2
max + θ2

E).

Using these definitions, and retaining only the leading terms†,

1

π

∫
dq

q3
dφ

∑
nk

|〈nk|q · r|c〉|2δ(ε − εnk) =
(

ln
θmax

θE
− 1

2

)(〈x〉2 + 〈y〉2) + 〈z〉2.

Equation (5) is the integral to evaluate in the dipole approximation in the general case of an
anisotropic crystal, using a coordinate system for〈x〉2, 〈y〉2 and〈z〉2 such that−z is parallel
to the beam direction. Normally this will involve taking linear combinations of〈x〉2, 〈y〉2 and
〈z〉2 calculated using conventional crystal axes. In the special case of specimen isotropy, the
components ofr (x, y andz) are equivalent by symmetry, and so we have〈x〉2 = 〈y〉2 = 〈z〉2.
This will apply in randomly oriented polycrystalline samples and is exact for cubic crystals,
but is an approximation for anisotropic single crystals. In the isotropic case our expression for
the cross section (proportional toI (E)/I0) reduces to

σ(E) =
(

4πme4

h̄2

)
1

E0
ln
qmax

qmin

∑
nk

|〈nk|z|c〉|2δ(ε − εnk).

Because of the weak logarithmic function, the intensity is essentially a constant times a
weighted density of states. This follows once we recognize∑

nk

δ(ε − εnk)

as an expression for the total density of states obtained from the energy bandsεnk such as those
in figure 2. A very important consequence of the dipole approximation is thatselection rules
require that if the core state has angular momentum` then the final state must have angular
momentum̀ ± 1. This comes about from the evaluation of the angular part of the integral (2)
in the dipole approximation. Ifϕc(r) = ϕc(r)Y`m, ϕnk(r) = ϕnk(r)Y`′m′ , to evaluate (4) we
write z = √4π/3rY10, and get

〈nk|z|c〉 =
√

4π

3

∫
dr ϕ∗nk(r)rϕc(r)

∫ ∫
d� Y ∗`′m′Y10Y`m (6)

where the angular part is a Gaunt coefficient that is zero unless`′ = `±1. Therefore, as Muller
et al [12] have pointed out, the expression for the differential cross section resembles closely

† We assumeθE � θmax � 1, which compares well with the conditions of our experiment in whichθE ≈ 10−3,
θmax≈ 10−2. Incidentally, there is a solution of (5) for which the integral takes an average over〈x〉2, 〈y〉2 and〈z〉2;
namely whenθmax/θE = 1.36. Under these experimental conditions, therefore, the spectrum will be independent of
crystal orientation.
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Figure 2. Energy bands of TiC, TiN, VN and CrN calculated in the local density approximation
using the FP-LMTO method. These are theεnk appearing in equation (3), the energy as a function
of wavevectork being plotted along high-symmetry lines in the Brillouin zone. The energy zero is
the average Hartree potential in the interstitial region between the atomic spheres. The horizontal
broken line shows the position of the Fermi level which separates occupied from unoccupied states.
Bands around the Fermi level are bonding and antibonding combinations of anion 2p and cation 3d
states which are strongly hybridized. The lowest band is the anion 2s band; bands above the
pd manifold are mostly of anion 3d and cation 4s character.

a weighted (orlocal) density of states, such as a Mulliken projection onto basis functions with
certain angular momentum centred at a particular atomic site. Thus one might reasonably
replace the expression∑

nk

|〈nk|z|c〉|2δ(ε − εnk) (7)

with a term proportional toq−2 times∑
nk

∣∣Fproj(nk)
∣∣2 δ(ε − εnk) (8)

where ∣∣Fproj

∣∣2 = m∑
`=−m
|〈nk|R`m〉|2 (9)

and

〈r|R`m〉 = χ`m(r −R)
is one of the basis functions in which the band states are being expanded, having the correct
angular momentum to satisfy the dipole selection rules and centred on the atomic siteR in
question. For example figure 3 shows projected densities (8) obtained from the energy bands
in figure 2. This should be a reasonable approach for any matrix elementFproj that projects
out the correct angular momentum according to the dipole selection rule, as long as the energy
dependence of the radial part of the integral (6) is very weak. Mulleret al [12] have calculated
this energy dependence for the case of Ni–Al alloys. A central goal of the present work is to
compare spectra obtained from the two weighted densities of states, equations (7) and (8).

4. The edge threshold

The absorption edge occurs when the beam has enough energy to excite a particular atomic
core electron into the lowest unoccupied state, which in a metal is at the Fermi energy. In
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Figure 3. Total and Mulliken projected densities of states in TiC, TiN, VN and non-magnetic CrN,
derived from the energy bands in figure 2. Here we have moved the energy zero to coincide with
the Fermi level, and used eV as units of energy. The deep minimum, which is near the Fermi level
in TiC, in all figures separates the bonding and antibonding states.

the one-electron approximation one takes this threshold energyEth to be the Fermi energy
measured relative to the eigenvalue of the core electron. However, the eigenvalue of the core
state depends on its occupancy such that, in density functional theory, its eigenvalue is given
according to Janak’s theorem by [31,32]

εc(qc) = ∂EHK

∂qc

whereEHK is the Hohenberg–Kohn (HK) total energy andqc is the number of electrons
occupying the core state.

The proper way to calculateEth is as the difference between two HK total energies: the
ground-state energy and the energy of the state in which there is a core hole with the missing
electron occupying the lowest unoccupied level of the ground-state system. Both should be
self-consistently calculated to allow the electronic system to respond to the presence of the
core hole. Thus, ifEHK(qc) is the HK total energy,

Eth = EHK(qc)
∣∣
qc=1− EHK(qc)

∣∣
qc=2 (10)

is an exact expression within density functional theory. This is called the1SCF approach [15]
since it involves the energy difference between two self-consistent fields. Ifεc(qc) is linear in
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qc (say,εc(qc) = εc(0) +Ucqc) then according to Slater’s transition state theory [15,32]

Eth =
∫ 1

2

∂EHK

∂qc
dqc =

∫ 1

2
[εc(0) +Ucqc] dqc = −εc(qc)

∣∣
qc=3/2. (11)

This means we can either calculateEth asEHK(1)−EHK(2) or as the Fermi energy relative to
the core eigenvalue in a self-consistent calculation in which there ishalf a core hole. One can
think of the integral as representing a thought experiment in which the eigenvalue of the core
level is continuously measured as the core occupancy is slowly varied between two and one
(i.e., as the core hole ‘grows’). The point is that, employed as a one-electron theory, the LDA
eigenvalues do not correspond to excitation energies of the system, although they are often
interpreted as such. However, if the calculation is done so as to allow electronic relaxation as
in equations (10) and (11), then the LDA does a good job of describing the screening. In other
words, the LDA one-electron levels are in error, but the Coulomb repulsion

Uc = ∂2EHK

∂q2
c

is nearly correctly rendered in a self-consistent LDA calculation. We can then regard the energy
levels strictly as excitation energiesif they are calculated self-consistently in the presence of
half a hole in the core state which is excited.

We can test this by calculatingEth in these three different approximations and comparing
to experiment. We show data in table 1 for a wide range of transition metal carbides and
nitrides. A fuller comparison of experiment and theory for these compounds will appear
elsewhere [33]. As discussed in section 2.2, we have taken the experimental thresholds from
our earlier work [16,17] but take those of Pflügeret al[20,22] when their values differ from ours.
Our theoretical results are essentially in accord with those of Aryasetiawan and Gunnarsson for
the semi-core levels in semiconductors [34]. The one-electron approximation underbinds the
core levels by about 20 eV. The Slater transition state approximation is in excellent agreement
with the1SCF approach, indicating thatεc is indeed linear inqc. However, the LDA in the
1SCF approach introduces an error of about 4 eV into the threshold energies. Aryasetiawan
and Gunnarsson did calculations beyond LDA (using theGW approach) to investigate how this
remaining error can be removed; we have not done this. The power of the transition state theory
is that when we come to calculate the spectrum at the near edge, we can maintain half of a core
hole in order to account for the screening effects missing in the one-electron approximation.
These are sometimes called ‘final-state effects’. This approach has also recently been adopted
by Köstlmeier and Els̈asser in the context of the pseudopotential approximation for Mg and
Al oxides [35].

A significant difference between the one-electron and transition state results is that in
the one-electron approximation, the mean value of the underbinding of the N K edges in
the calculation is 3.25 eV greater than that of the C K edges, whereas in the transition state
approximation the mean overbinding of the N K edges is only 0.55 eV more than that of the
C K edges. So, whereas the transition state theory corrects all but about 4 eV of the one-
electron error, the remaining discrepancy with experiment is very much the same for both
nitride and carbide anions, namely 4.22± 0.44 eV of overbinding in the calculations. As
we will see below, this provides us with a prescription for calculatingabsolute valuesin the
electron energy-loss spectrum.

The screening of the core hole turns out to be so short ranged thatEth calculated in larger
supercells with just a central atom having the core hole is identical (to within 0.2 eV) to that
from a single unit cell which mimics a crystal containing a core hole in every anion. The
supercell approach is the correct one: in a typical EELS experiment, the electron fluxI0 is
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about one electron per nm2 per 10−10 s, whereas a typical electronic relaxation time (based on
the plasmon energy) is about 10−16 s.

Finally, we should remark that invoking well known generalized gradient approximations
was found to make no real improvement over the LDA. On the contrary, using two separate
gradient corrections [36, 37] we found that the one-electron threshold energies were closer
to experiment by about 3 eV. But the1SCF and transition state values overcorrect the
experiment, so the final error, when including gradient corrections, was about 3 eV greater
than in the LDA.

5. Electronic structure

In the results shown in table 1, and in all that follows, we have solved the Kohn–Sham density
functional equations using full-potential (FP) LMTO-based methods [38]. The benefits of
such all-electron methods is that the core states are allowed to relax during self-consistency
providing greater accuracy in the matrix element evaluations than in, say, pseudopotential
methods [2, 35]. Furthermore, all relativistic effects except spin–orbit coupling are included
in the relaxation of the valence- and core-electron wavefunctions. We have adopted two FP-
LMTO schemes. We use a method due to Methfessel [39, 40] which uses a conventional
Hankel function basis and which thereby allows a rather transparent Mulliken projection onto
atomic-like basis functions for evaluatingFproj, equation (9); and a newer scheme of Methfessel
and van Schilfgaarde [41], which uses a basis of smooth Hankel functions, in which we have
implemented the calculation of the dipole matrix elements in (7).

We begin by showing the electronic bandstructure of the four transition metal compounds
in figure 2. The energy bands are displayed, as is conventional, in atomic Rydberg units
of energy (1 Ryd= 13.61 eV) with an energy zero which is the average Hartree potential
in the interstitial region of the crystal. Points of high symmetry are labelled with the usual
symbols [42]. The energy bands show clear similarities which are emphasized further by the
densities of states shown in figure 3. The energy zero is now shifted to coincide with the Fermi
energy, and we use eV as units of energy to be consistent with spectroscopic usage. In each
compound the anion (C or N) 2s band is isolated below a manifold of anion 2p and cation
(Ti, V, Cr) 3d states which are hybridized to form bonding and antibonding combinations. The
anion 2s band can be seen at the low-energy end of the TiC figure but is below the minimum
energy of the figures for the other compounds. In TiC, which is the strongest of the ‘hard
metals’, the bonding states are filled and separated by a minimum in the density of states
from the unoccupied antibonding states; and this is the origin of this material’s mechanical
and thermodynamic stability. Essentially this is because bonding states are lower in energy
than the free-atom states from which they are derived, and conversely the antibonding states
are higher. Therefore, the more bonding states are filled, the greater the cohesion in forming
the solid; and the more antibonding states are filled, the weaker the cohesion. Above the pd
manifold, separated by a band gap, are the higher-lying bands, mostly of cation 4s and anion 3d
character. What is striking is that the electronic structure of the remaining compounds is well
approximated by that of TiC, with the Fermi level raised by the addition of electrons due to
increasing the atomic number of either the anion or cation. This argues that a simple, empirical
tight-binding approach to the electronic structure of carbide and nitride transition metal binary
and ternary (and higher) alloys is likely to be successful. This picture breaks down somewhat
with CrN where there is significant band narrowing as well as magnetic instability, as we shall
see below.
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6. The anion K edge of TiC, TiN and VN

Within the LMTO method we can calculate the dipole matrix elements in (6) as long as the
core state has s symmetry (i.e.,` = 0). This avoids the question of multiplet structure which
cannot be tackled in the conventional solid-state LDA [1,43,44]. It is clear from figure 3 that
unoccupied states of` = 1 character are the p-projected local density of states at the anion sites.
Therefore we may calculate the near-edge structure at the anion K edge as either equation (7):
the density of states weighted at eachk-point by the (squared) dipole matrix element (6); or as
equation (8) with the sum in equation (9) being over all LMTO basis functionsχ`m(r) centred
on anion sites with angular momentum̀= 1†.

As mentioned earlier, in order to compare lineshapes with experiment we need to account
for the finite lifetime of initial and final states. To do this we follow procedures of Müller
et al [11] and Mulleret al [12] and convolute the density of states with a Lorentzian of width

0 = 0i + 0f .

Here0i is the width of the core state, which can be obtained from atomic data [45], and0f is
the width of the final state. A general procedure would be to have0f ∝ (ε − εF )2, whereεF
is the Fermi energy, and fit the proportionality constant to, say, the linewidth of the second or
third peak. However, Mulleret al use an expression for jellium, namely [26]

0f = π2
√

3

128
Ep

(
ε − εF
εF − ε0

)2

in whichEp is the plasmon energy andεF − ε0 is the width of the occupied part of the band.
By using plasmon energies taken from the low-loss region of the EELS spectra and using the
bottom of the anion s band forε0 we obtain very good agreement for the linewidths as seen
below. The spectra are finally convoluted with a 0.4 eV wide Gaussian to account for the
instrumental resolution.

Figures 4, 5 and 6 show the experimental ELNES for TiC, TiN and VN compared to
three calculated spectra. We have arbitrarily scaled the calculations so that the intensity
approximately matches the experimental intensity near the first peak. A prescription for
predicting absolute intensity has been described by Mulleret al [12]; it involves aligning the
intensity calculated at energies above the fine structure to the decaying atomic intensity [5,6].
But the high-energy density of states is not available to the linear bandstructure methods we
use here. In order to correct for the LDA error in the threshold energy, we have subtracted
the mean value for all anions, namely 4.22 eV, from the transition state values in table 1 when
aligning the spectra on the energy axis. This provides an absolute prediction of the energy loss
with a single many-electron correction to the LDA obtained by comparing with experiment.
We show the total density of states projected onto the anion p LMTOs, equation (8); the
one-electron approximation to the density of states weighted with the dipole matrix element,
equation (7); and the same quantity calculated in a unit cell in which each anion has half a
core hole in the 1s state. In each case the near-edge structure shows two characteristic peaks
which can be identified with the peak in the partial p density of states followed by the drop at
the upper band edge. The band gap above the pd manifold is seen as a deep minimum in the
near-edge structure. The position of this minimum measures thewidthof the unoccupied part
of the pd manifold, the agreement between theory and experiment being very good, despite
the fact that the LDA usually overestimates the width of bands derived from transition metal
d electrons [46].

† In fact in each̀m channel we use three LMTOs having different localization energies [40].
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Figure 4. The experimental anion K-edge ELNES in TiC superimposed on our three theoretical
estimates of the spectra: the Mulliken projected anion 2p density of states, equation (8); the density
of states weighted with the dipole matrix element, equation (7); and the same quantity calculated
self-consistently in the presence of half a core hole in the anion 1s state: the Slater transition state
approximation.

Figure 5. As figure 4, but for TiN.

Overall, the agreement between the experiment and the calculations is very good.
Considering the calculations first, the regions up to the first main peak match very well. The
energy of the second peak is generally lowest in the projected density of states and highest in
the one-electron dipole matrix element with the value for the transition state matrix element
falling between these extremes. The energies of the deep minima∼10 eV above the threshold
agree to better than 1 eV as do those of the higher-energy features, The effect of omitting the
energy dependence of the matrix element (see the discussion following equation (9)) in the
projected density of states shows up clearly in these high-energy features which appear with
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Figure 6. As figure 4, but for VN.

much lower intensity when using the Mulliken density compared with the calculation of the
dipole matrix element.

Turning to the experimental data, the absolute alignment of the TiC spectrum with the
calculations is excellent because they show a common step at the threshold, and this is
sufficiently far from the sharp peak in the unbroadened partial density of states, shown in
figure 3, that the determination of the experimental threshold is unambiguous. The agreement
for TiN is good, but the low-energy shoulder at the threshold in the calculation is not visible in
the experimental data. In the case of VN, the agreement of the absolute threshold is less good
and the experimental width of the unoccupied pd manifold is, if anything, wider than that in
the calculation. There is a difference of 0.47 eV between the Slater transition state threshold
and the experimental threshold of Pflügeret al [20]. There is an even bigger difference if our
experimental value is used [16]. We should mention here that from the experimental spectra,
we obtain the threshold as the point of maximum slope behind the first peak; and in figures 5
and 6 especially, we see that the threshold in the calculations does not correspond to the
criterion of maximum slope. This is a further source of discrepancy between the experimental
and calculated values of the threshold energies and serves to emphasize the difficulties in
determining the values of the threshold energy experimentally.

7. The anion K edge of CrN

We found that the two-peak structure was not observed in CrN; rather a single peak was seen
which is not consistent with the partial anion density of states in figure 3. In that figure, we
see a narrowing of the band and a large density of states at the Fermi level. Added to a large
Stoner parameter in Cr (≈50 mRyd—nearly 5 mRyd larger than in V or Ti [47]), this leads
one to expect to see a magnetic instability [48]. We have used local spin-density functional
theory (LSDA), with collinear moments, to calculate the electronic structure and magnetic
energy in ferromagnetic (FM) CrN and antiferromagnetic (AFM) CrN in the structure reported
by Corlisset al [49], having a Ńeel temperature ofTN = 288 K [50]. In this structure, pairs
of (220) Cr planes of the rock-salt structure have spins aligned ferromagnetically in the (220)
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plane; but the pairs of planes themselves are stacked in antiferromagnetic alignment along the
[110] direction. This magnetic structure lowers the symmetry to orthorhombic, which allows
the lattice constants and internal coordinates degrees of freedom to relax. However, this lattice
distortion occurs only below the Ńeel temperature which is below room temperature; as noted
in section 2.1, our specimen showed a cubic diffraction pattern at room temperature.

Ferromagnetic CrN is 16 mRyd (217 meV) per CrN formula unit lower in energy than the
non-magnetic (NM) phase. The magnetic moment is 2.18µB per CrN formula unit. Figure 7
shows the Mulliken projected densities of states for the Cr 3d and N 2p LMTO channels. This
is a very clear example of rigid-band itinerant magnetism with an exchange splitting of about
0.1 Ryd (1.3 eV). Because of covalency and because each N atom is surrounded by six Cr
atoms with the same orientation of the magnetic moment, the N 2p states are also exchange
split, by the same amount. In fact one sees in figure 7 that the exchange splitting is not uniform
within the band, being rather less in the bonding manifold. The exchange splitting leaves a
peak in the majority-spin density of states at the Fermi level, and this may be why this is not
the lowest-energy magnetic state.

FM

AFM

Figure 7. The Mulliken projected N 2p and Cr 3d densities of states in FM and AFM CrN. Panels
show up- and down-spin-projected densities. In the AFM structure the roles of up and down are
reversed in alternating pairs of (220) planes of Cr in the rock-salt structure.

Antiferromagnetic CrN is 25 mRyd (336 meV) per CrN formula unit lower in energy than
the non-magnetic phase. (We find that this is 1 mRyd lower than the MnO AFM structure,
which is AFM in the [111] direction; furthermore, relaxation of the lattice constants into those
given by Corlisset al lowers the energy by a further 3 mRyd.) The local Cr magnetic moment
is about 2.00µB . This is less than in FM CrN, but the local moments on the Cr atoms are
about the same. The lower total moment can be understood from figure 7 which shows that
only the Cr 3d bands are exchange split. The splitting is less uniform than in FM CrN, being
zero at the top and bottom of the pd manifold. Each N atom has four spin-up and two spin-
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down Cr neighbours; the spin polarization of the anions is frustrated and amounts to zero.
There is now a deep minimum in the density of states at the Fermi level and the bonding is
strongly covalent in the manifold of bonding states. This is a rare case of a magnetic covalent
compound.

In figure 8, we compare the experimental ELNES and XANES spectra with N 2p projected
densities as in figure 7, broadened according to the prescription described earlier. We have
not calculated absolute energy loss here; instead we have lined up the spectra and densities
of states by eye. The excellent agreement between the two experiments argues strongly in
favour of the dipole approximation. A slight difference between the two spectra is a shoulder
in the XANES at about 4 eV, which is less prominent in the ELNES. The NM CrN theoretical
spectrum gives the same two-peak structure as TiC, TiN and VN and is not consistent with the
experimental data. The AFM calculation is in better agreement with the experimental spectra.
It predicts a feature on the high-energy side of the first peak which is seen in the XANES
and less prominently in the ELNES. The AFM calculation also shows similar features in the
5–15 eV energy range but at lower intensity; we recall that this is consistent with our neglect of
the energy dependence of the matrix element, since we are using Mulliken densities to predict
near-edge structure here. Both the NM and FM calculations show totally different structure in
this energy range.

FM
AFM

Figure 8. The experimental anion K-edge ELNES
and XANES in CrN compared with the Mulliken
projected N 2p densities of states in NM, FM and
AFM magnetic structures.

Ferromagnetic CrN has not been observed as far as we are aware, and this result is
consistent with our total-energy calculations. Because of the large magnetic energy we would
expect local moments to persist right up to temperatures ofkT ≈ 200 meV, namely∼2000◦C.
We also do not expect the FM phase to occur even in the strongest possible magnetic fields. As
mentioned in section 2.2, we have found no detectable changes in N K-edge structure between
−140 ◦C and +160◦C. This suggests that, given that long-range order vanishes within that
range of temperature, the ELNES is dominated by the first few moments of the density of
states.
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8. Discussion

On the whole the agreement between theory and experiment is very good on the scale of
electron volts in the near-edge structure. It is clear that a Mulliken projection onto unoccupied
states whose symmetry honours the dipole selection rule is a good substitute for the actual
dipole matrix element. A number of authors [2, 51] have proposed writing (from (1a) with
kf /ki ≈ 1)

dσ(E)

d�
=
(

2me2

h̄2

)2 1

q2

{|m`+1|2 ρ`+1(ε) + |m`−1|2 ρ`−1(ε)
}

(12)

for a core state of angular momentum`. Here, them` are energy-dependent matrix elements—
the radial part of the integral in equation (6)—andρ`(ε) are projected densities of states of
angular momentum̀. As Mulleret al[12] and Nelhiebelet al[28] point out, equation (12) does
not follow from the formal theory or from the definition of Mulliken projected DOS. However,
equation (12) is rigorously correct in the LAPW formalism if the`-projected densities of states
are obtained by a projection, as in (9), onto atom-centred spherical harmonics rather than basis
functions [11], i.e., replace〈r|R`m〉 with Y`m(r − R) in (9). The difficulty with such a
projection is that, except in the case of the atomic spheres approximation used in [11], the
projection does not conserve the total number of states. From our point of view it is also of less
physical interest than a Mulliken projection, since if the Mulliken projection turns out to be of
value (as it does here) then this has much wider implications, for example as an approximate
scheme for EELS and XANES predictions in LCAO and tight-binding models.

By directly calculating the dipole matrix elements one avoids approximations such as the
dependence of the result on the choice of basis functions. There remains the approximation
of a dipole matrix element. This can easily be removed in the present context by including
quadrupole terms (and higher if needed) [28]. However, this is at the expense of the integration
overq in equation (3). This is not difficult to do, but one would need to know the orientation
of the crystal with respect to the beam, as one would indeed in the dipole approximation if
the crystal were not cubic or isotropic. Our approach differs from that of Nelhiebelet al [28]
who obtain the intensity as a function ofq. This approach is valuable if one is measuring
the q-dependence of the scattering as opposed to measuring the scattering integrated over
a range ofq, as here. On the other hand the popular approach based on equation (12),
and our Mulliken approach, neglects theq-dependence and furthermore assumes an isotropic
specimen. In deriving equation (5) we have shown how to predict the EELS intensity in the
usual experimental arrangement. We see, incidentally, that referred to the coordinate system of
figure 1 one cannot distinguish experimentally between〈x〉2 and〈y〉2 without either changing
the crystal orientation relative to the incident direction or biasing the range ofq collected by
misaligning the collection aperture with respect to the incident direction.

We have already remarked that the rigid-band picture seems very much applicable to the
compounds we have studied here, and this leads one to suppose that a working tight-binding
model could be constructed to explore questions of non-stoichiometry and ternary alloying in
the hard metals. Because of the near equivalence of the dipole matrix element to an appropriate
partial density of states, it is probable that the tight-binding model could even be used to predict
the near-edge structure in complex alloys.

We next remark upon the Slater transition state approach to what are sometimes called
‘final-state effects’, or removing the ‘sudden approximation’ [35]. For the calculation of the
threshold energy this has a large effect and the self-consistent LDA approximation toUc leaves
us with a remaining error of a few eV forEth. Clearly there is a large electronic relaxation
involved in screening the core hole, but this is accomplished primarily by core-level shifts and
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a downward shift of the anion 2s band; the unoccupied band states are little affected by the
presence of the core hole. We can see this in the theoretical spectra in figures 4, 5 and 6 in
which peaks above the threshold are pulled down in energy by only∼1 eV as a result of the
electronic relaxation.

It is gratifying that in the long run a simple Mulliken-like projection is adequate to describe
the near-edge structure, as indeed is predicted by equation (12). In fact we have exploited this to
simplify our calculations for the magnetic phases of CrN. Even at this level of approximation
we can clearly distinguish between different magnetic states in LSDA and compare with
experimental spectra. This exposes nicely the connection between ELNES and XANES and
the LSDA as probes of magnetic structure in solids. In the case of CrN the magnetism is too
strong to observe any changes in electronic structure near the transition temperature. However,
this does not rule out the possibility in weakly magnetic crystals of studying fluctuations in local
moments. The most modern bandstructure approaches now include non-collinear magnetism
and finite-temperature spin dynamics [52]. The time-averaged Mulliken density may be easily
calculated as a natural by-product of the dynamical simulations.

9. Conclusions

We are able to predict the electron energy loss and x-ray absorption near-edge structure subject
to the following essential approximations being made.

(1) The first Born approximation.
(2) The one-electron approximation for matrix elements.
(3) The local density approximation for exchange and correlation.
(4) Slater transition state theory to account for electronic relaxation to screen the core hole.

The validity of these has been discussed in the text. The most serious is the one-electron
approximation. This confines us in particular to a discussion of K edges, since the usual
LDA, with its neglect of orbital-dependent exchange, does not adequately deal with multiplet
splitting.

As many authors have surmised, one can predict the dipole-allowed transition cross
sections in ELNES and XANES using a simple angular momentum projection of the density
of states. This has a bearing on simpler electronic structure models such as the tight-binding
approximation. When one includes the screening of the core hole, even at only the LDA level,
this greatly affects the threshold energies and brings them into agreement with experiment, with
a residual error of a few eV. The electronic relaxation of the core hole affects the unoccupied
levels to a lesser extent: typically there are downward shifts of 1–2 eV.

Our study of CrN has revealed the interesting and significant fact that theanionnear-K-
edge structure can be used to probe thecationspin alignments. We do not find any temperature
dependence of the ELNES due to the large magnetic energy in CrN. However, in weakly
magnetic materials we see ELNES and XANES as providing techniques to investigate complex,
non-collinear magnetic structures. This could in future be coupled with the recent development
of spin dynamics [52] in the LSDA to further refine the connections between experimental and
theoretical approaches to magnetic structure and its temperature dependence.
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